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SUMMARY 

This paper is devoted to the description and the detailed numerical analysis of a new spectral collocation 
method for the Stokes problem in a square, involving three staggered grids. 
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1. STAGGERED GRIDS: AN INTRODUCTION 

We are interested in the approximation of the following Stokes equations over the square 
R = A’, with A = ] - 1,1[: Find a velocity u = (u, v) and a pressure p such that 

- v AU + @/ax = f in R, (la) 

- v AV + d p / a y  = g in R, (1b) 

divu=O in R, (2) 
where the body forces f = (f,g) are given and v is a positive real number. This system is 
provided with homogeneous Dirichlet boundary conditions 

u = O  on aR. (3) 

Let N 3 1 be a fixed integer. We want to use a collocation spectral method, hence we 
search for approximations uN and p N  of u and p such that each component of uN and p N  
belong to the space Pn@) of all polynomials of degree d n  with respect to each variable, 
where n is close to N .  The discrete solution will be chosen in order to satisfy the Stokes 
equations at some points in 6 called collocation points. As pointed out by Orszagl and 
Gottlieb,2 these points are related to the Gauss-type quadrature formulae associated with 
the Legendre orthogonal polynomials (we refer to Davis and Rabinowitz3 for details about 
numerical integration). A general presentation of spectral methods can be found in Gottlieb 
and Orszag4 or Canuto et aL5 
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This paper is motivated by the difficulty encountered in most numerical schemes due to 
the presence of spurious modes for the pressure; these modes pollute the solution and 
sometimes lead to incoherent results. The difficulty is connected with the well-known problem 
of finding a compatible choice of discrete spaces for the velocity and the pressure. In Bernardi 
et a1.6-8 we have explained the theoretical properties that these spaces must satisfy. They 
have been initially pointed out by Brezzig as the inf-sup condition. 

In a first method, introduced by Morchoisne” and generalized by Mktivet,” a collocation 
grid EN is defined by the tensor product of the nodes of a Gauss-Lobatto integration rule 
using N + 1 points; the discrete velocity u, and the discrete pressure p N  are respectively 
chosen in P,@)’nH~(R)’ and P,(a) so as to satisfy equations (1) at each point of ZNnQ 
and equation (2) at each point of EN. In this method the equations are not mutually independent 
and the pressure is not uniquely determined by the equations; indeed the solution consists 
of an affine subspace of dimension eight in P,(G). However, it has been pr0ved~9~ and tested 
in numerical experiments”,’ that such a scheme (after elimination of the spurious modes and 
the redundant equations) provides a good approximation of the velocity while a post-treatment 
is necessary to obtain a good discrete pressure. Nevertheless, the numerical difficulties 
encountered justify the research of a method where no spurious mode comes to pollute 
the solution. 

0 Set Z ,  

Figure 1.  Using a unique collocation grid 

When the problem of spurious modes arises in a finite difference context, a well-known 
tool to solve it consists of the introduction of staggered grids, i.e., different grids on which 
the various equations (1) and (2) are satisfied. This suggests the idea of a similar strategy for 
spectral methods. A first attempt in this direction can be found in Zang and HussainiI2 and 
analysed for the approximation of the Navier-Stokes equations with periodic boundary 
conditions in every direction but one.6 Another attempt due to Montigny-Rannou and 
Morchoisne,13 in the more interesting case of non-periodic boundary conditions, has 
drastically reduced the number of spurious modes. In this method two grids are considered, 
one for the velocity and another for the pressure. More precisely, the grid EN is the same as 
in the previous method (see Figure 1) and a new grid Z.;Y is defined by the tensor product 
of the nodes of a Gauss integration rule using N points. From the properties of the Gauss 
and Gauss-Lobatto points, these two grids are staggered. The numerical velocity and pressure 
are then searched in P,(n)’ A HA(R)’ and P, - I (8) respectively in order to satisfy equations (1) 
at each point of E,nR and equation (2) at each point of Z.;Y. Unfortunately the algorithm 
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0 Set Z ,  

rn Set “I; 

Figure 2. Using two collocation grids 

does not solve the main difficulty since, besides the constant mode, there exists one further 
spurious mode, namely the function Lh(x)Lh(y), where L, is the polynomial of degree N in 
the family of Legendre polynomials. A priori it may seem easy to filter this unique mode, but 
we must point out that, in the three-dimensional case of a cubic domain, the number of spurious 
modes is equal to 3N-4 in this last method. 

The aim of this work is to propose and analyse a new collocation method where no spurious 
mode is present. The discrete pressure is again sought in P,- (a), while we must choose a less 
natural space of discrete velocities. Equation (2) is again satisfied on the nodes of the same grid 
EL as in Figure 2, but two different grids are introduced for equations (la) and (Ib) respectively; 
each one is staggered with respect to Ek in a different direction. The relative position of these 
three grids is the spectral analogue of a situation which is well known in a finite difference 
context.14 Moreover, this algorithm actually presents numerical properties which will appear 
later on and which compensate the complexity of using three grids. 

In Section 2 we shall give a description of the method and indicate a suitable variational 
formulation of it. In Sections 3 and 4 we shall prove some properties of the associated discrete 
Laplace operator and discrete pressure gradient respectively. These results will be used in Section 
5 to derive error estimates for the velocity and the pressure. 

2. DESCRIPTION O F  THE ALGORITHM 

In the sequel we denote by (LJntN the family of Legendre orthogonal polynomials on the 
interval A =]  - 1, I[, where L, is the polynomial of degree n normalized by the condition 
I,,(_+ 1) = (k l )” .  We recall that P,(A), EN, is the space of polynomials of degree < n 
restricted to the interval I\. Let us introduce the set {el, . . . , c N }  of the nodes of the Gauss 
integration formula with N points over A, with il < ...  < i,; it is well known (Section 2.7 of 
Reference 3) that these points are the N zeros of L,. Let us also introduce the set {to,:. . , t N )  
of the nodes of the Gauss-Lobatto integration formula with N + 1 points over A, with 
- 1 =to < t1 < ... < 5, = 1; these points are the N + 1 zeros of (1 - i2)Lb. It is an easy 
matter to note that, for any i, 1 < i d N ,  we have ti- < ci < ti. We recall (Section 2.7 of 
Reference 3 and Section 3.2 of Reference 15) that there exist 2N + 1 positive real numbers 
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The tensor products of these two sets of points give us different grids over that will be 
used for the definition of the collocation approximation of problem (I), (2). Let us consider 
the grids 

Due to the relative position of the Gauss and Gauss-Lobatto points, SN,x is staggered with 
respect to Eh in the x-direction and Z N , y  is staggered with respect to EL in the y-direction. 

Figure 3. The three collocation grids (for N = 7) 

The use of different grids implies that the spaces of discretization for the components of the 
velocity and the pressure will not coincide. For any non-negative integer n we set 
P,@) = P,(A)O P,,(A). We first introduce the discrete space X N  = X N , x  x X N , y  defined by 

x N , x  = [P,(n)oP,+,(A)lnHh(n), (94  

x N , y  = cPN+1(')@ PN(n)lnHh(Q). (9b) 
In order to obtain a unique solution for the pressure, we take the constant mode off the space 
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of discrete pressures; so we define 

Our discrete problem is: Find a discrete solution U, = (u,, u N )  in X N , x  x X N , y  and a discrete 
pressure p N  in MN such that 

v X & N , x n n ,  [ - v A u N  + d p N / d x ] ( x )  = f ( X ) ,  (1 la) 

Remark 1 

Of course it is an easy matter to define the same algorithm by using the Chebyshev 
approximation instead of the Legendre one: indeed, it suffices to replace the ii by the zeros of 
T, and the ti by the zeros of (1 - i2)TN, where TN(i) = cos(Ncos-’ i) denotes the Chebyshev 
polynomial of degree N .  From a numerical point of view4,11,13 this last choice has to be preferred, 
since it is possible in this case to use a fast Fourier transform algorithm to decrease the 
computation time. But the analysis is then much more difftcult to perform, since the Chebyshev 
polynomials are orthogonal with respect to the weighted measure (1 - 1’)- l j 2  d i  and the gradient 
and divergence operators are no more adjoint to each other for this measure. However, it is 
now under consideration, and we think that it can be achieved thanks to the techniques developed 
for a single-grid algorithm.8 The theoretical results are foreseen to be the same as in the 
Legendre case. 

Remark 2 

It is straightforward to extend the algorithm to the three-dimensional case by using four 
staggered grids. To approximate the Stokes problem in the cubic domain 1- 1, lL3, we define 
the grids 

E , , , = ( ( 5 i , i j , i k ) , O < i < ” , 1  < j , k 6 N ) ,  - 
G N , y  = ((ti, < j , l k ) , O  < j  < N ,  1 < h k  6 N } ,  

S:N+- = ((li, i j ,  t k ) ,  0 6 k 6 N ,  1 6 i , j  6 N } ,  

Zh = { (ii, ij, i k ) ,  1 < i ,  j ,  k < N ) .  

Next, we seek a discrete velocity U, in X, = X N , x  x XN,y x XN,=, with 

x N , x  = [‘,(Iz) @ ‘ N +  1 (A)@ IFDN+ 

~ , v , ~  = P N  + 1 (A) o p,(& o PN + 1 (&I n%(A3 1, 
xN,z = [’N+ ‘N+ 8 ‘,(A)] H A ( A 3 ) ,  

and a discrete pressure p N  in M, = {~EP,- , (A3); Ja3 q(x)dx = 0) such that the four equations are 
satisfied at the nodes of 8N,,nn, EN,ynQ, kN,,nQ and 8k respectively. It is lengthy to write 
but not more difficult to implement than in the two-dimensional case. Moreover, the numerical 
analysis turns out to be the same one and leads to similar results. 
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Remark 3 

As we shall see in Section 4, this algorithm has no spurious modes; we want to point out 
another reason why we think that this discretization is better than other ones. We can say that 
the grids are staggered in the ‘good’ directions. Indeed, let us consider the partial derivatives 
which appear in equation (1 la): with the notation of Figure 3, the computation of Au at a point 
a, by a pseudospectral method involves the values of u at any node of the straight line D, (resp. 
P,) in order to calculate a2u/ax2 (resp. a2u/ay2); in the same way, to evaluate the value of 
@/ax at a,, we need only to know the values of p at any node of the straight line D,. Using 
the same kind of argument for equations ( l lb)  and (12), we check that the verification of our 
discrete problem only requires a one-dimensional derivation process of interpolation, in contrast 
to other a1g0rithms.l~ 

Remark 4 

discrete spaces. More precisely, let us define the polynomials qi, 1 d i d N ,  in PN- l(& by 
Using the notion of Lagrange interpolants will provide us with suitable bases for the various 

Vi, V j ,  1 < i, j d N ,  qi(cj) = a,,, 
and the polynomials ri, 0 6 i d N ,  in PN(A) by 

Vi ,  V j ,  0 6 i, j 6 N ,  r i ( t j )  = Jij, (14) 
where hij  stands for the Kronecker symbol. It is now an easy matter to check that the set 

In order to analyse the discrete problem, we need a variational formulation of it. First, let us 
recall some basic results concerning the continuous problem. We define the two spaces where 
the solution (u,p) has to be searched. For the velocity we set 

while for the pressure we choose 
x = [H3Q2)I2, (1 5 )  

We then define the two bilinear forms 

Vu = (u, v)EX, Vw = (w, z)EX, a(u, w) = v Vu(x)Vw(x)dx, (17) 

Vu = ( ~ , u ) E X , V ~ E M ,  b(u,q) = - (divu)(x)q(x)dx. (18) 

la 

I* 
It is standard to check that, whenever the body forces f a r e  in the dual space H-’(R)’ of X, 
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problem (1)-(3) has the following equivalent variational formulation: Find u = (u, u) in X and p 
in M such that 

VWEX, a(u, w) + b(w, p) = (f, w), 

VqEM, b(u, 4)  = 0, 
where (. , a )  denotes the scalar product in L2 (Q)’ as well as the duality pairing between H-’(Q)2 
and H;(Q)’. 

The formulation of the discrete problem leads us to introduce the two bilinear forms uN, 

vu = (u, V)€@(fi)’,VW = (w, Z)€@(sz)’, 
N N  

and bN, 

vu = (u, U)€%O(fi)’, vqE%1(fi), 
N N  

Using (4) and (5), we obtain the important property 

VU = (u, v)EX, VqEM, 

so that 

Finally, we define a discrete scalar product (. , .)N by 

Vf = ( f ,  g ) E P ( f i ) 2 ,  v w  = (w, Z)€%?O (sz)’, 

We are in a position to prove: 

Proposition 1 

For any f in %‘O(fi)’, the discrete problem ( l l ) ,  (12) is equivalent to the following Variational 
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Proof. It is an easy matter to check that the discrete problem (ll) ,  (12) is equivalent to: Find 
uN = ( u N , u N )  in X N , x  x XN,y and p N  in MN such that 

Vx&N,xnCl, [ ( - v A ~ ~ + d p , / d x ) Q ~ ~ ] ( x ) = ( f Q ~ ) ( x ) ,  1 < i < N -  1, l  < j < N ,  

v/XEEN,ynR, [ ( - V A ~ N + a p ~ / a y ) Q t ] ( X ) = ( g Q ~ j ) ( x ) ,  I < i < N , 1  GjGN-1 ,  

VXEEL, [(div U)Q:~](X) = 0, 1 < i ,j  < N ,  

where the polynomials QG, Q:j and Qij have been defined in Remark 4. Hence definitions 
(20), (21), (24) and property (23) lead to the equivalence between problem (ll),  (12) and the 
following: Find uN = ( u N ,  u N )  in XN,x x X N , y  and p N  in M, such that 

VWNEX,, ~ N ( u N ~ w N )  + bN(wN,pN) =(f,w,),, 
(26) 

v q N E p N -  1 bN(uN, q N )  = O. 

Since we have MN 0 R = PN- (a), the equivalence between this last problem and (25) is a 
consequence of the following simple equality (recall (4) and (23)). 

As a matter of fact, if we compare the numbers of unknowns and equations in problem (ll),  
(12), it appears that (12) is over-specified and that numerically we have to impose this 
divergence-free condition at only any N 2  - 1 points among the N2 of EL. The corresponding 
equation we have not checked is then automatically verified since, due to the ever-present 
property 

N N  P 

2 2 (div uN)(ci, l j )w iwj  = div uN dx = 0, 
i =  1 j =  1 JQ 

there exists one (and only one, as will be proved later) linear dependency condition between the 
values of div uN on the set ZL. 

3. PROPERTIES OF THE DISCRETE LAPLACE OPERATOR 

In this section we study the properties of the bilinear form aN defined in (20). This form is related 
to the discretization of a vectorial Laplace operator involving two staggered grids. 

First, we need some properties of the quadrature formulae. 

Lemma 1 

For any cp in 5',-l(&, the following inequalities hold: 
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Proof. Let us write cp in the basis (L&)lGnGN: 
N 

r ~ ( i ) =  C cpnL: , (O .  
n= 1 

Thanks to the formula (Section 1.13 of Reference 3) 

(d/d[)((l - c2)En) + n(n + l)Ln = 0 

and using )IL, 11 = I/(n + 1/2), we know that 

On the other hand, due to (4), we also have 
N N - l  N 

i =  1 n =  1 i =  1 
1 (1 - cf)(P([i)'Wi = 1 q i n ( n  + l)/(n + 1/21 + q i  - cf)cN(ci)2Wi. (30) 

To study this last term, we recall the formulae (Section 1.13 of Reference 3) 

From (28) we see that (1 - c2)CN(c) is the primitive function of - N ( N  + l)LN which vanishes 
for 5 = 5 1, hence is equal to - [ N ( N  + 1)/(2N + 1)](LN+1 -LN-l) by (31). Since the fi,  
1 < i < N ,  are the zeros of LN, using (32), we compute 

- cj" )cN(cj) = - c N ( N  + 1)/(2N + - ( N / ( N  + - 1 (cj) - L N -  1 (5j)l = NLN - 1 ( [ j ) ,  

which gives 

= N (  [LN- 1 LNI 1 - '%- I (oLN(C) dc) = 2N. 
{A 

From this last formula, together with (29) and (30), we deduce the lemma. 

Lemma 2 

~~r any in pN - (A), the following inequalities hold: 
N 

c N - ' / ~ ( I  -cz)2cp([)2dc< C (1 - 5 ~ ) 2 c p ( i i ) 2 ~ i < c  (1 -.i2)2cp((5)2di. (33) 
i =  1 

Prooj. Let us now write cp in the basis (LL)2snSN+1: 

N + 1  

n = 2  
cp( i )=  c @ n G ( C ) .  

Derivating the formula (28), we obtain 

(d/dc)((l- C2)L;) = (d/dl)(2<Ln - n(n + l)Ln) = 2& - (n - l)(n + 2)L&, 
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whence 
(d/d[)((l - [2)2LE) = (1 - [')(2[L; - (n - l ) (n  + 2)G)  - 2[(1 - c2)&, 

so that using (28) once more gives 

This formula yields 
(dz/dc2)((l - C2)'G) =(n - l)n(rt + I)(n + 2)Ln. 

r N +  1 

(34) 

(35) 

We must compute the two last terms. 
(1) Since the l i ,  1 ,< i d N ,  are the zeros of L,, using successively (28), (32) and (31), we have 

(1 - c?)c&([i) = 2cjLh(ii) = 2(cLN)'([i) = (2/(2N + l))((N + l)"h+ 1 + NL'N- l ) ( c i )  

=2L;-l(Ci)> 
so that 
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Using (28), (32) and (33), we compute 

and, on the other hand, 
N 

1 (l - r?)2[@N - lLi- 1 (Ci) + @N+ 1L;+ 1 (Ci)12mi 2 4;- 1((N - 2)(N - I)N/(N - 1/2)) 
i = l  

+ @;+ (N(  1 5N2 - 4N - 2)/(N - 1/2)). (39) 

From (35)-(38) we derive the second inequality of the lemma. From (39437) and (39), noting 
that the coefficients of @i-l, 4; and @ ; + l  are in 0 ( N 3 )  in the exact sum and in 0 ( N 2 )  
in the discrete sum, we obtain the first inequality. 

Now we can state some properties of the discrete form aN. 

Proposition 2 

The form aN is uniformly continuous with respect to N ,  i.e., 

vu~xN,vwExN7 laN(bW)I < c~u~l,S2~w\l,S2' (40) 

Proof. Thanks to the definition (20) of aN, we must prove that, for any u and w in XN,x, 
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and note that, due to (28), 
N 

(a2U/aY2)(X,Y) = - 1 un(x)n(n + l)&(y). 
n = l  

Thanks to (4) and (51, we have 

Using Lemma 1 gives 
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We recall (Lemma 3.2 of Reference 15) that formulae (5) and (6) yield for any cp in P N ( h )  

Hence we obtain 

Proposition 3 

The form aN satis$es the following condition of ellipticity: 

VUEXN, aN(u,u)> cN-l lul: ,Q.  (44) 

Proof. Thanks to the definition (20) of a N ,  it suffices to prove that, for any u in X N , x ,  
N N  

- C C (a2u/ax2)(ti, ij)u(ti, ij)Pimj 2 cN- ’  IIau/axII (45) 
i = o  j = 1  

(1) Due to (5), we have 

Writing (du/ax)(x, y )  = (1 - y2)r(x, y),  where Y belongs to P,- (A) Q P N  - (A), and using Lemma 2, 
we obtain immediately (45). 

(2) We set 

Due to (4) and (9, we have 
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Using Lemma 1, then (28) and (43) gives 
N N  

whence (46). 

Remark 5 

The constant cN-' in formula (44) is optimal. Indeed, we consider the polynomial u = (u, 0), 
where u is given by 

4x3 Y) = s(x)(l - Y Z ) W Y )  (47) 

c1 lls~lO,A + N-2 IlS'1IO,A c2 (48) 

and s is a polynomial of P,(A)nHh(A) satisfying 

(then we have aN(u,u) < cN6 and I U I : , ~  > c'N7.  An example of polynomial which satisfies (48) is 
N - 2  

s(O = N - l ( l -  i') 1 sn((2n + l)/n(n + 1))G(i) 
n = 2  

with s, equal to n2 if n is ,< N/2 and equal to (N - n)2 if n is > N/2). 

4. PROPERTIES OF THE DISCRETE PRESSURE GRADIENT 

It remains now to study the properties of the bilinear form b, defined in (21), which is related 
to the discretization of the pressure gradient in equation (1). We can already state: 

Proposition 4 

The form b, is ungormly continuous with respect to N,  i.e., 

V'UEXN? VGM,, lb,(u, 41 d clul1,nll4lIo,n. (49) 
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so that, using (4) once more, 

Since the C j  are the zeros of LN, we have by (32) 

We obtain 

The following proposition ensures that the space MN contains no spurious mode, i.e., no 
function q such that bN(u,q) vanishes for any u in X,. This fact proves the compatibility 
between the spaces X ,  and MN. 

Proposition 5 

The form b, satisfies the following inf-sup condition: 

Proof. Let q be any function in MN. We set 

Then we define u = (u,u) in X N  by 

and 
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so that, due to (31), 

N-1 N-I .. - .. 
(an/dy)(Cj,y) = - c 1- q m n L m ( i i ) L ( y ) ,  1 6 i G N .  

m = O  n = l  

Thanks to the property ( 5 )  applied to bN, recalling that qOO is equal to 0, we have 

Next we use the PoincarC-Friedrichs inequality 

llUllo,n 6 C l l ~ ~ / ~ X l l O , ,  6 c"li2 Ilqllo,,? 

Ilau/aYllo,, 6 CN2 l l 4 o . n  6 CNSi2 lI41lo,n. 

IUl1,n 6 CNS12 l I 4 l l O . m  

I~l,,.~CNsi211ql10,R. 

then an inverse inequality (Lemma 2.4 of Reference 15), so that 

Finally we obtain 

and, in exactly the same way, 

We deduce the lemma from (54)-(56). 

5. ANALYSIS OF THE DISCRETE PROBLEM 

We begin by stating that the discrete problem (ll), (12) is well posed, since it is now a 
straightforward consequence of the variational formulation (25) together with Propositions 2-5 
and a classical result about saddle-point problems.9 
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Theorem 1 

For any f in problem (11),  (12) has a unique solution (u,,p,) in X, x M,. 

The main result of this section will consist of some error estimates between the solutions (u, p )  
and (u , ,~ , )  of problems (1)-(3) and (ll), (12) respectively. First we estimate the approximation 
error between a divergence-free function and its projection onto a subspace of divergence-free 
polynomials, following here an idea of Sacchi Landriani and the second author. More general 
results have been proved by Sacchi Landriani and Vandeven.' 

Lemma 3 

Let o be a real number 2 1 .  For any function u in X n H'(R)2 satisfying div u = 0 in Q, there 
exists a function ii, in 

{ L p N -  1 (A) 6 PN- nHi!)(R)} [ P N -  2 ( l i )  6 p N -  1 (A)] nHi!)(R)} 9 

satisfying div ii, = 0 in R, such that 

I U , ~ , l l , R d ~ ~ l - u I I U I l u , n .  (57) 

Proof. Since u satisfies div u = 0 in R, we know that there exists a function I) in Hi@) such 
that u = curl $ in R; moreover, $ belongs to HU+l(Q). Let I), denote the projection of I) onto 
P,-l(fi)nH@) with respect to the scalar product of Hi@). Clearly, if we set iiN=curl$,, 
ii, belongs to 

{ CpN- 1(A) @ p N -  2(&)1 nHt(RZ)} { [PiV - 2(&) 6 1 (A)] nHk(Q)} 
and satisfies div u", = 0 in R. Moreover, we have (Chapter I1 of Reference 17) 

lu-ii , \ l ,n<c\* - * N J z , n d C " 2 - ( u + ' )  lI*I1u+l,R ~ ~ f " ' - u I l ~ l l u , n ~  

We need also to compare the discrete scalar product with the continuous one. 

Lemma 4 

Let p be a real number > 1 .  For any function f in HP(Q)', the following estimate holds: 

Proof. First let us introduce the interpolation operators i, and j N  associated with the Gauss 
and Gauss-Lobatto points respectively: for any cp in U0(A), i,q belongs to P,- l(n) and satisfies 

V i ,  1 d i < N ,  iNq(Ci) = d C i ) ,  (59) 

V i ,  0 d i < N ,  j N c p ( t i )  = q(5 i ) .  (60) 

while jNcp belongs to P,(@ and satisfies 

Then, for any f =(f ,g)  in %?*(a)', the polynomial 9 , f  = ((j,@i,)f, ( i , @ j , ) g )  is in 
{PN(A)O PNPl(A)} x {PN-1(A)6 PN(A)). Moreover, we notice that 

l I f - ( j N @ ~ , ) f I l o , n ~  IIf-bN@id)fIlo,n+ llf-(id@~,)fIlo,n+ IIGd -j,)@(id -~,).fIlo,fl. 
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It is well known (Theorem 3.2 of Reference 15) that, for any cp in H"(A), a > 1/2, 

IIV -~NVllo,, < c ~ 1 1 2 - a I l ~ l l u , R ~  

I/ cp -jh@ lIo,* G C"'2 -' II cpllu,n. 

Hence we obtain 

I I f - ( j N @ i N ) f I I o , n  < c ( N ' " - ~ I I ~ / ~  IIHQ(A.L~(A))+ N''2-PII f / f I I L 2 f i \ , H ~ ( h ) )  

\If- (id 8 iN)f\lHp/2(A,LZ(A))) 
+ "1 - P ) / 2  

+N('-P)PN(l-P)P l l f l l  HP/~(A,HQ/~(A))); 

Q II f i f  IIH"A,Lz(A)) + N1"-' II f i f  IILz(A,Hp(iz)) 

Using Proposition 4.2.3 of Reference 18 together with an interpolation argument, we know that 
HP(Q) is continuously imbedded into 

HP(A; L2(A))nL2(A; HP(A)) nHPl2(A; Hp12(A)), 
whence 

Estimating the term 119 - ( i N @ g N ) g  

ll f - ( j N  0 i N ) f l l O , Q  d c" - P  Ilfllp,n. 
in a similar way, we finally derive 

/ I f -  $NflIO,R cN1 -Pllfllp.R. (63) 

It is well known (Theorem 2.3 of Reference 15) that there exists a polynomial fN in 

(6- 1 (A) 0 PN- ,(A)> x { P N -  2 m  0 PN- 1 (A,>> 

l l f - fNl lo,* QCN-PllfllP,n- 

such that 

Clearly, due to (4) and (5),  we have for any V, in XN 

( f , v , ) - ( f , v N ) , = ( f - f N , v N ) +  ( fN-$Nf ,VN)N.  

Using a Cauchy-Schwarz inequality, then (43) and Lemma 2 yields 

(f, V N )  - (f, VN)N < / I f -  fN 11 0,n IIvN Il0.R + llfN - y N f  f1O.R IIvN I1O.R 

Q c( l l f -  fNlIO,* + ( I f  - 2 N f I l 0 , R )  IIVN I1 0,n; 

this last inequality, together with (63) and (64), gives the result. 

We are now in position to compare the continuous and the discrete problems. This is stated 
in the following two theorems. 

Theorem 2 

I f  the solution (u, p )  of problem (1)-(3) belongs to H"(S1)' x Ha- (a) for a real number a 2 1 
and the data f belong to Hp(R)2 for a real number p > 1, the following error estimate holds: 

lu - UNlI ,R  d C ( ~ 2 - a ( l l ~ l l u , ~  + llPllu-l,R) + N 2 - P l l f l l P * n 1 .  (65)  

Proof. First let vN be any element of X, such that 

V q N E M N ,  bN(VN, q N )  = 0.  
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so that 
(f? vN)  - (f, VN)N Iu-u,l,,*<cN lu-%Vl,,a+ IlP-qNIlo,n+ SUP i VNEXN I lVN II o,n 

It is well known (Theorem 2.3 of Reference 15) that 

Using this estimate and Lemma 4, together with (67), gives (65). 

Remark 6 

We recall (Theorem 3.3.3.1 of Reference 19 and Theorem 11.2 of Reference 20) that, for any 
p < po N 1.7396, the solution (u, p )  belongs to HP+2(Q)2 x HP+ '(R) whenever f is in Hp(Q)2. Hence, 
for f smooth enough, the discrete velocity uN always converges towards the exact one. 

Theorem 3 

Zf the solution (u, p )  of problem (1)-(3) belongs to H"(s2)2 x H"-'(SZ) for a real number (T 2 1 and 
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the data f belong to H P ( Q 2  for a real number p > 1, the following error estimate holds: 
512 N 2 - 0  

IIP - PNIl0.R G cN { (Ilulla,n + llPll0- I,*) + N2-p  l l f l l p , ~ l .  

Proof. Let qN be any element in MN. Using Proposition 5, we have 

Using (65), (68)  and Lemmas 3 and 4 in (70) gives the proposition. 

Remark 7 

A collocation pseudospectral problem similar to (1 l), (12) can be formulated to discretize the 
full Navier-Stokes equations. By using the same arguments as for periodic non-periodic 
boundary conditions6 together with the previous results, we can also study this non-linear 
problem and, if (u,p) is a non-singular and sufficiently smooth solution of the Navier-Stokes 
equations, we derive exactly the same error estimates (65) and (69) as in the linear case. 
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